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Abstract: Collaborative filtering is a popular recommender system (RecSys) method that produces
rating prediction values for products by combining the ratings that close users have already given
to the same products. Afterwards, the products that achieve the highest prediction values are
recommended to the user. However, as expected, prediction estimation may contain errors, which,
in the case of RecSys, will lead to either not recommending a product that the user would actually
like (i.e., purchase, watch, or listen) or to recommending a product that the user would not like, with
both cases leading to degraded recommendation quality. Especially in the latter case, the RecSys
would be deemed unreliable. In this work, we design and develop a recommendation algorithm
that considers both the rating prediction values and the prediction confidence, derived from features
associated with rating prediction accuracy in collaborative filtering. The presented algorithm is based
on the rationale that it is preferable to recommend an item with a slightly lower prediction value,
if that prediction seems to be certain and safe, over another that has a higher value but of lower
certainty. The proposed algorithm prevents low-confidence rating predictions from being included in
recommendations, ensuring the recommendation quality and reliability of the RecSys.

Keywords: recommender systems; collaborative filtering; algorithm; rating predictions; uncertainty;
confidence; evaluation

1. Introduction

Collaborative filtering (CF) is a RecSys method that produces rating prediction values
for products that a user U has not yet evaluated. This is accomplished by combining the
rating values that users that have demonstrated similar likings to U, which are called U’s
near neighbors (NNs), have already given to these products. The CF method is based on the
rationale that since a product is liked (or accepted, purchased, etc.) by user V and this user
is deemed to have similar tastes and likings to user U (“is close to U”), then, transitively,
user U will probably like this product as well. Afterwards, the products that achieved the
highest rating prediction values are recommended to user U, since these products have the
highest probability of being actually liked by U [1–4].

For example, if two products, p1 and p2, are candidates for recommendation to user U,
and the rating prediction values for these products have been calculated to be respectively
rpvp1 = 5/5 and rpvp2 = 4.5/5, the RecSys will obviously recommend the first one. While
the aforementioned approach seems totally rational, let us consider the practice of humans
when assessing reviews. Human users, besides the average review values, also consider
the certainty of these prediction values, at least to some extent. In our example, if the value
of rpvp1 = 5/5 is deemed to be of low certainty (e.g., it is based on only one individual’s
opinion), while rpvp2 = 4.5/5 has been calculated with high certainty (e.g., it is based
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on 100 individuals’ opinions), most people in this situation would trust rpvp2 more than
rpvp1 and probably prefer product p2 over product p1, since rpvp2 = 4.5/5 is a very high
prediction value, which also seems to be certain and safe. On the other hand, although
rpvp1 = 5/5 is clearly a higher value, it may be subject to bias, superficial assessment,
subjectivity issues, differences in the reason behind the reviews, or other factors. Hence,
the selection of p1 entails significantly higher risks.

From the example presented, we can conclude that the certainty (or confidence) of rating
prediction values, when it can be calculated, can be of great importance to the RecSys.

Recent works have explored prediction features associated with rating prediction
accuracy in CF [5,6]. More specifically, these works showed that (1) the number of NNs
taking part in the rating prediction formulation, (2) the average rating value of the item
taking part in the rating prediction formulation (by all users who have rated it), and (3) the
average rating value of the user for whom the rating prediction is being formulated (for all
items he has rated) are positively associated with CF rating prediction accuracy. Although
these findings provide valuable insights for rating predictions, they have not yet been
utilized for rating prediction formulation, since an algorithm that can be directly used in
CF datasets was not provided.

In this work, we take into account the observations of previous works [5,6] on the
characteristics of rating predictions that can be considered to be of high certainty, and
exploit them as follows:

(1) We introduce a novel rating-based recommendation formulation algorithm that ex-
ploits the certainty aspect of rating predictions to generate more accurate and useful
recommendations.

(2) We validate the effectiveness of the proposed algorithm in terms of recommendation
success through an extensive evaluation experiment. The evaluation process (a) in-
cludes six CF datasets from multiple sources, widely used in CF RecSys research;
(b) considers both the correlation threshold technique and the top-k technique for the
NN selection; and (c) employs both the Pearson Correlation Coefficient (PCC) and the
Cosine (or Vector) Similarity (CS) for user similarity computation, both widely used
in CF RecSys research.
Since the presented algorithm targets the recommendation formulation stage, for
the assessment of the algorithm performance, we utilize pertinent metrics, and more
specifically (i), the average rating value of the top-N recommended items, (ii) precision,
and (iii) the normalized discounted cumulative gain (NDCG) [7–11].

(3) We analyze the additional computational and storage costs incurred in order to
compute, store, and utilize the additional data needed by the proposed algorithm,
demonstrating its feasibility and applicability.

In order for (i) this algorithm to have universal application and (ii) the results to be
independent of the selection of other algorithms and methods (e.g., user review analysis,
user social relations, item categories, etc.), only the tuple <user_id, item_id, numeric_rating>
is used as input, without any complementary data. We note, however, that—due to its
generic nature—the proposed algorithm can be combined with other algorithms aiming
to increase rating prediction accuracy, coverage (i.e., the percentage of cases for which a
personalized recommendation can be computed), or recommendation accuracy.

The remainder of the paper is organized as follows: in Section 2, we review related
work, while in Section 3, we present the prerequisites, the CF methodology, and the
proposed algorithm. In Section 4, we present the results of the evaluation of the proposed
algorithm, while in Section 5, we analyze the results and discuss the algorithm’s limitations.
Lastly, in Section 6, we conclude the paper and summarize our future work.

2. Related Work

CF recommendation quality is a research area that has attracted considerable research
attention over the last 10 years. This research area consists of two main categories. The
first includes research works that incorporate complementary input data, from the char-
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acteristics and categories/taxonomy of the products to user social relations and review
data. The second includes research works that are solely based on the data stored in the
rating matrix.

Regarding the first category, Yang et al. (2017) propose a model-based technique that
integrates sparse rating social information with trust network information between the
same users in order to upgrade the CF recommendation performance [12]. More specifically,
this technique adopts matrix factorization methods to accurately reflect the influence of the
users on the formulation of their opinions. Wang et al. (2017) introduced a hybrid technique
that incorporates the rating preference of users, the asymmetry between users, the non-
linear relationship between variables, and the influence of all possible rated items [13].
Furthermore, they use a comprehensive non-linear formula as well as asymmetric and
user preference factors. Xin et al. (2019) introduced an algorithm that employs multiple
item relations in RecSys, namely Relational CF [14]. This algorithm infers user preferences
by considering both the relation value and the relation type of the items. Furthermore,
they design and develop a hierarchical attention method that can model user preferences
by considering the relation values of an item contribution and distinguishing the most
important types of relations.

Jiang et al. (2019) presented a technique that can be applied to a plethora of RecSys [15].
This slope-one technique is based on user–user similarities and the fusion of trusted data.
It contains the following three steps to produce the final recommendation function: trusted
data selection, user similarity calculation, and insertion of the aforementioned similarity
into the weight factor of the slope one technique. Zhang et al. (2021) presented a deep
learning service recommendation CF algorithm [16]. This algorithm embeds the similarity
adaptive corrector in the output layer in order to correct the predictive quality of service.
The nonlinear and high-dimensional characteristics are captured in a multilayer-perceptron,
and high-dimensional vectors are embedded with location features.

Alhijawi and Kilani (2020) introduced BLIGA, a genetic-based RecSys that is based on
historical ratings and semantic data [17]. This RecSys evaluates the candidate recommen-
dation lists before producing the recommendation, instead of evaluating the items. BLIGA
uses a genetic algorithm to find the optimal item list. It evaluates the users by utilizing
fitness functions. These functions estimate the satisfaction level similarity between users
and utilize item semantic data and semantic information to estimate item semantic simi-
larity strength. Nilashi et al. (2018) introduced a hybrid CF RecSys algorithm that utilizes
dimensionality reduction and ontology methods to overcome the drawbacks of scalability
and sparsity [18]. Afterwards, an ontology is used to enhance the CF recommendation
accuracy. Clustering methods with singular value decomposition techniques are utilized to
discover the closest items and users within a cluster.

All the aforementioned works achieved improvements concerning CF recommenda-
tion quality; however, they cannot have universal application, since complementary input
data, which they all incorporate, cannot be provided in every case (i.e., in every CF dataset).

In this direction, Liao and Lee (2016) presented a method that reduces the number
of items’ dimensionality by using a self-constructing clustering technique [19]. More
specifically, this method sends dissimilar items to different clusters and similar ones to
the same cluster. Then, each user is presented with a ranked set of recommended items.
Chen et al. (2021) introduced a CF-based recommendation algorithm that incorporates the
dynamic decay function [20]. This function can capture the users’ preference variations
and interest evolution.

Margaris and Vassilakis (2017) presented a CF algorithm that removes old user ratings
from the rating database under the assumption that these do not reflect the users’ tastes
and likings in the present [21]. This algorithm can be executed in an unsupervised fashion
and is found to be able to both enhance rating prediction accuracy and minimize the CF
rating database size. Diaz et al. (2019) introduced a Bayesian algorithm that allows the
justification of the produced recommendations [22]. This algorithm defines methods based
on item-based and user-based CF. It combines these methods into a single user-item method.
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Neysiani et al. (2019) aimed to provide a solution to the problem of multi-objective rule
mining by using a weighted quality metric [23]. This metric utilizes the confidence and
support of association rules, which are found using a genetic algorithm. Furthermore, the
use of the genetic algorithm results in fast association rule discovery.

Ren and Wang (2018) introduced a CF-based service recommendation algorithm,
which is based on a support vector machine [24]. With the use of this machine, the
services that are of no interest to users, utilizing user historical rating data, are filtered out.
Furthermore, the distance between the separating hyperplane and the point representing
the service is used to compute the preference degree of a user. Thakkar et al. (2019)
introduced an algorithm that synthesizes user-based and item-based predictions to produce
CF rating predictions with low prediction deviation [25]. The proposed algorithm supports
vector regression and also utilizes multiple linear regression.

He et al. [26] introduced a new Graph Convolution Network recommendation model,
namely LightGCN, which comprises two components, a light graph convolution and a
layer combination. The first component is a simplified form of the fully fledged GCN
method, omitting the operations of feature transformation and non-linear activations,
which complicate the training phase. The second component computes the final embed-
dings of the nodes, as the weighted sum of their embeddings on all layers. LightCGN is
shown to outperform NGCF. Liu et al. [27] introduced an interest-aware messaging-passing
graph convolution network recommendation model that follows the LightGCN simplified
network structure. This model can partially alleviate the over-smoothing issue by grouping
items and users into subgraphs and then applying to these subgraphs high-order graph
convolutions. Li et al. [28] presented the Disentangled Graph Neural Network, a technique
that combines the consideration of factor-level ratings on each item with the session pur-
pose. This technique initially utilizes the disentangled learning method to cast embeddings
of items into multiple factor embeddings, and afterwards, in order to learn the embedding
factor effectively, it employs the gated graph neural network. Wei et al. [29] introduced a
Light Graph Transformer model that learns user preference representation from the rated
item features by establishing correlations between items. It develops a layer-wise position
encoder and a modal-specific embedding for the vicinity calculation, as well as improves
the self-attention scoring efficiency by presenting a light self-attention block.

Still, none of the aforementioned research works utilize rating prediction features to
reduce the uncertain rating predictions from becoming recommendations in CF and, at the
same time, retain universal application, which is only based on very basic CF information.

Recent works have explored simple prediction features associated with rating predic-
tion accuracy in CF. However, they did not provide an algorithm that can be directly used
in CF datasets [5,6].

This work advances the state-of-the-art research on recommendation accuracy in CF by
introducing an algorithm that is based only on very basic CF information. It considers not
only the rating prediction value but also the rating prediction (un-)certainty that is derived
from features that have been proven to be associated with rating prediction accuracy in CF
to provide more successful recommendations to its users.

3. Prerequisites and the Proposed Algorithm

In the following subsections, the procedure of recommendation formulation in CF is
briefly presented for self-containment purposes (Section 3.1). The features related to rating
prediction accuracy in CF are analyzed in Section 3.2, and finally, the proposed algorithm is
introduced in Section 3.3.

3.1. CF Recommendation Formulation Procedure

The recommendation formulation procedure of a typical CF RecSys, for a user U,
consists of four steps.

In step 1, the RecSys calculates the similarity between U and the other users in the
rating database using a similarity metric. The similarity value, in most of the CF similarity
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metrics, is based on the ratings that users have already given to commonly rated items.
Popular CF user similarity metrics include the PCC, the CS, the Jaccard Index, the Spearman
Correlation, etc. [30–32]. For most of the metrics, the similarity range is either [0, 1] or
[−1, 1], where higher values indicate higher similarity (also referred to as vicinity) between
the users.

In step 2, the users that will play the role of U’s NNs in the recommendation procedure
are selected. More specifically, these NN users’ ratings will be used to formulate the
rating prediction values for user U. Popular methods for selecting the NNs in CF are the
correlation threshold method and the top-k method. The first one designates as U’s NNs
those users V whose similarities with U exceed some specified threshold value. The second
one retains as U’s NNs the k users with the highest similarity with U, where k is a parameter
of the algorithm [33–35].

In step 3, the rating prediction numeric values for the items that user U has not yet
rated are computed. This is accomplished by combining the rating values of U’s NNs,
selected in the previous step, for the exact same items. To this end, a rating prediction
formula is used. In this work, we use the most popular method for rating prediction
formulation in CF, which is the mean-centered formula [36–38].

The last step (step 4) of a RecSys is to formulate the recommendation to the user.
It typically recommends the item(s) that achieved the highest rating prediction numeric
value(s) in the previous step to user U in the most effective way [39–41].

3.2. CF Rating Prediction Accuracy Features

Recent research works have investigated the relationship between rating prediction
features and prediction accuracy in CF [5,6]. More specifically, these works examined CF
prediction features and their association with rating prediction accuracy in CF systems.
Both works included experiments, which proved the following:

(1) The number of NNs taking part in the rating prediction formulation (NN_no) is
associated with the accuracy of the CF rating prediction.

(2) The average rating value of the item taking part in the rating prediction formulation
(by all users who have rated it) is associated with the accuracy of the CF rating
prediction.

(3) The mean rating numeric value of the user concerning the formulated rating prediction
(for all items he has rated) is associated with the accuracy of the CF rating prediction.

In regard to the first feature (NN_no), it was found that a higher number of NNs
that take part in the rating prediction formulation is positively associated with increased
rating prediction accuracy in CF. Regarding the sparse datasets (with density << 1%), if
NN_no ≥ 2, then the rating prediction is considered to have relatively high accuracy, while
if NN_no ≥ 4, then the rating prediction is considered to have very high accuracy. Regard-
ing the dense datasets, if the percentage of NNs taking part in the CF rating prediction
is ≥6%, then the rating prediction is considered to have relatively high accuracy. If this
percentage is ≥15%, then the rating prediction is considered to have very high accuracy.

Regarding both the second and third features, when the average rating value is near
the limits of the rating range, the rating prediction is considered to have high accuracy.
More specifically, when considering a five-star rating scale (as for most of the datasets used
in CF research), when either the user’s mean rating value or the item’s mean rating value
are ≤2.0 or ≥4.0, then the rating prediction is considered to have relatively high accuracy.
When the same averages are ≤1.5 or ≥4.5, then the rating prediction is considered to have
very high accuracy.

3.3. The Proposed Algorithm

The proposed algorithm introduces three additional steps in the CF recommenda-
tion process:
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1. A preprocessing step, where, for each item, the mean rating value given by all users
who have rated it is computed. More formally, the mean rating value for each item is
computed as follows:

ri =
∑U∈Raters(i) rU,i

|Raters(i)|
where Raters(i) is the set of users that have given a rating for item i, and rU,i is the
rating of each user U to this item.

2. During step 3 of a typical RecSys (described in Section 3.1), along with the prediction
computation, the NNs number that took part in the prediction is also stored. The
rating prediction of user U to item i will be defined as rpU,i, while the NNs number
that took part in the prediction will be defined as NN_no(rpU,i). Typically, NN_no(rpU,i)
is calculated as follows:

NN_no(rpU,i) = |{V ∈ NN(U) : rU,i ̸= NULL} |

where NN(U) is the set of user U’s NNs, which is determined according to the strategy
employed by the RS (i.e., either (a) their similarity to U exceeds the specified threshold
THR or (b) they are the k users having the highest similarity with U).

3. Lastly, in the fourth step of a typical RecSys, predictions (i) either concerning items
without an average rating value given by all users, near the limits of the rating scale,
or (ii) produced with a low number of NNs are deemed as uncertain and hence are
excluded from being recommended to the user. Formally, in order to compute a
recommendation for user U, a candidate recommendation item set for user U CRISU is
computed as follows:

CRISU = {i ∈ I : rU,i = NULL
∧
(NN_no(rpU,i) ≥ RECOM_THR)

∧
((ri ≤ LOW_ITEM_AVG_THR)

∨
(ri ≥ HIGH_ITEM_AVG_THR)) }

where I is the set of all items, RECOM_THR is the minimum number of recommenders
for a rating prediction to be considered reliable, and LOW_ITEM_AVG_THR (resp.
HIGH_ITEM_AVG_THR) is the threshold for the average item ratings by all users
below which (resp. above which) the rating prediction is considered reliable. After
CRISU has been computed, the elements of this set with the highest rating predictions
are selected for recommendation to the user.

Figure 1 illustrates the workflow of the proposed algorithm. The processing steps in
the upper lane correspond to the workflow of the typical CF recommendation algorithm,
while the processing steps in the lower lane correspond to the additional steps introduced
in the proposed algorithm.
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In the following section, we evaluate the proposed algorithm in terms of recommenda-
tion accuracy.

4. Experimental Evaluation

In this section, we report on the experiments aiming to evaluate the proposed algo-
rithm in terms of recommendation accuracy.
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In order to warrant the generalizability of the experiment output, the experiments in
our evaluation have been designed and executed to:

1. Include six CF datasets from multiple sources that are widely used in CF RecSys research.
2. Use both the correlation threshold technique and the top-k technique for NN selection.
3. Include both the PCC and the CS for user similarity, which are the most widely used

similarity metrics in CF RecSys research.

The six datasets, along with their attributes, are summarized in Table 1. We can
observe that datasets from multiple sources are used. Also, the selected datasets include
several product fields, such as videogames, movies, and digital music.

Table 1. The datasets used in the experiments.

Dataset Name #Ratings Ratings Range #Users #Items Density Characterization

MovieLens 1 M
(https://grouplens.org/datasets/movielens/,

accessed on 5 May 2024)
1 M 1–5 6 K 3.7 K dense

MovieLens 100 K
(https://grouplens.org/datasets/movielens/,

accessed on 5 May 2024)
100 K 0.5–5.0 600 10 K dense

Amazon Videogames (https:
//nijianmo.github.io/amazon/index.html,

accessed on 5 May 2024)
473 K 1–5 17.5 K 55 K sparse

Amazon Digital Music (https:
//nijianmo.github.io/amazon/index.html,

accessed on 5 May 2024)
145 K 1–5 12 K 17 K sparse

Epinions (https://www.kaggle.com/datasets/
masoud3/epinions-trust-network, accessed on

5 May 2024)
922 K 1–5 22 K 296 K sparse

CiaoDVD (https:
//guoguibing.github.io/librec/datasets.html,

accessed on 5 May 2024)
73 K 1–5 17.6 K 16 K sparse

Regarding NN set selection, the KNN and the similarity threshold are used since
these are the two most widely used methods in CF research. In the first method, K users
having the highest similarity values with the active user are used as NNs. In the second
method, the users whose similarity values with the active user exceed a specific threshold
are used as NNs. For the KNN method, we run experiments with K = 200 and K = 500
based on the selection of K in the experimental sections of related works [3,36,42,43]. For
the similarity threshold method, we run experiments with THR = 0.0 and THR = 0.5 since
the two similarity metrics used do not share a common value range. More specifically, the
PCC has a range of [−1, 1], while the CS has a range of [0, 1] when applied to datasets with
positive rating values, as are the six datasets used in this work.

Regarding the evaluation metrics used in our experiments, the standard rating pre-
diction error metrics, such as the Mean Average Error and the Root Mean Square Root
(MAE and RMSE, respectively), cannot be used to evaluate the presented algorithm. This
is because the presented algorithm targets the recommendation formulation phase rather
than the rating prediction computation phase. As a result, the metrics used for evaluating
the presented algorithm are as follows: (i) the average real numeric rating value of the
top-N recommended items; (ii) their precision; and (iii) their NDCG. Regarding the value
of the N number in the top-N selection, we use the numbers three and five, since these
numbers are used in many recent RecSys research works [44–48]. Lastly, regarding the
precision metric, we follow the approach adopted by numerous works, including [49–51],
where the recommendation includes all items for which the prediction falls in the top 30%
of the rating scale (in our six datasets, this threshold is set to 3.5/5).

In the following subsections, we analyze the settings of the experiment as well as
present and discuss the evaluation results.

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://nijianmo.github.io/amazon/index.html
https://nijianmo.github.io/amazon/index.html
https://nijianmo.github.io/amazon/index.html
https://nijianmo.github.io/amazon/index.html
https://www.kaggle.com/datasets/masoud3/epinions-trust-network
https://www.kaggle.com/datasets/masoud3/epinions-trust-network
https://guoguibing.github.io/librec/datasets.html
https://guoguibing.github.io/librec/datasets.html
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4.1. Experimental Settings and Procedure

In this work, we follow the five-fold cross validation process, which is a very common
validation procedure in CF [52–56]. In this process, we split the rating dataset into five
equal folds. For each iteration, one fold is used as the test set, while the union of the
remaining four folds is used as the train set. Lastly, the union of the five iterations (on the
test sets) is used for the result.

In order for (i) the results to be applicable on every CF-based RecSys and (ii) the results
to be independent of the selection of other algorithms and methods exploiting additional
data, which may not be available in all cases (e.g., user review analysis, user social relations,
item categories, etc.), only the tuple <user_id, item_id, numeric_rating> is used as input,
without any complementary data.

All of the reported experiments were executed on a laptop equipped with 8 GB of
RAM and an AMD Ryzen 5 4600 H CPU. Since the experiment code was written as a
single-threaded application, only one of the CPU cores was utilized. The code realizing
both the baseline and the proposed algorithm was written in C, with custom indexes to
improve execution efficiency. All input files were formatted as text files, with each line
accommodating a <user_id, item_id, rating> record.

4.2. Evaluation

In this subsection, we report on the experiments, aiming to assess the presented
algorithm in terms of recommendation success. The presentation of the results is organized
into the following two subsections: Section 4.2.1 presents results under the PCC similarity
metric, while Section 4.2.2 discusses the results under the CS similarity metric.

4.2.1. Evaluation Using the PCC Similarity Metric

Figure 2 illustrates the average (real) rating value of the top-3 items recommended,
before and after the application of the proposed algorithm in all six datasets, using the
top-k technique, with K = 200 for the NN selection, and using the PCC similarity metric;
the average across all datasets is also depicted.
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Figure 2. Average rating value of the top-3 recommended items using the PCC user similarity metric
and setting K = 200.

The proposed algorithm achieves an average increase in the real rating recommen-
dation value of 5% (from 4.27/5 to 4.48/5), considering the average across all datasets.
Examining each dataset individually, it can be seen that when the proposed algorithm
is applied to the MovieLens 1 M dataset, where the lowest initial average rating of the
recommendations is noticed (due to the highest rating prediction error—both in terms of
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MAE and RMSE), at 3.86/5, this average is enhanced to 4.31/5. At the other end, when
the proposed algorithm is applied to the Amazon Digital Music dataset (which is the
dataset with the lowest rating prediction error), with a 4.8/5 initial average rating of the
recommendations, it achieves a smaller enhancement, reaching a value of 4.85/5. The
decrease in the performance gains achieved is expected since the improvement margin in
the case of the Amazon Digital Music dataset is very small.

Figure 3 illustrates the average recommendation precision value of the top-3 items
recommended before and after the application of the proposed algorithm in all six datasets,
using the top-k technique with K = 200 for the NN selection and using the PCC similarity
metric. The proposed algorithm achieves an average increase in the recommendation
precision value of 8.6% (from 82% to 89%). Examining each dataset individually, we
can observe that when the proposed algorithm is applied to the MovieLens 1 M dataset,
where the lowest initial recommendation precision is noticed, at 67.9% (which practically
means that, on average, the users would dislike almost one out of three recommendations
made to them), this average is increased to 83.9%. At the other end, we can notice that
when the proposed algorithm is applied to the Amazon Digital Music dataset, with 96%
recommendation precision, which is very close to the optimum performance, it achieves
further improvement, reaching 97.4%.
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Figure 3. Average precision value of the top-3 recommended items using the PCC user similarity
metric and setting K = 200.

Figure 4 illustrates the average NDCG value of the top-3 items recommended, before
and after the application of the proposed algorithm in all six datasets, using the top-k
technique with K = 200 for the NN selection and the PCC similarity metric. The proposed
algorithm achieves an increase in the NDCG in all datasets tested, while its average value
is increased from 0.971 to 0.98.

When we increase the number of recommended items to five (top-5 recommended
items), similar results are observed. The average real rating recommendation value is
enhanced by 4.7% (from 4.28 to 4.48). Regarding the average recommendation precision
value, this is also enhanced by 8.2% (from 82.5% to 89.3%), while the average NDCG value
is increased from 0.966 to 0.978.

When we increase the number of NNs taking part in the rating prediction formu-
lation to K = 500, similar results are also observed for both the top-3 recommendations
and the top-5 recommendations per user. More specifically, in the first case (top-3 recom-
mendations), the proposed algorithm achieves an average enhancement in the real rating
recommendation value of 5% (from 4.29/5 to 4.5/5), an average enhancement in the rec-
ommendation precision value of 8.3% (from 82.5% to 89.4%), and an average NDCG value
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increase from 0.971 to 0.981. In the second case (top-5 recommendations), the proposed al-
gorithm achieves an average enhancement in the real rating recommendation value of 4.5%
(from 4.31/5 to 4.5/5), an average enhancement in the recommendation precision value of
7.8% (from 83.2% to 89.7%), and an average NDCG value increase from 0.966 to 0.979.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 10 of 25 
 

 
Figure 3. Average precision value of the top-3 recommended items using the PCC user similarity 
metric and setting K = 200. 

Figure 4 illustrates the average NDCG value of the top-3 items recommended, before 
and after the application of the proposed algorithm in all six datasets, using the top-k 
technique with K = 200 for the NN selection and the PCC similarity metric. The proposed 
algorithm achieves an increase in the NDCG in all datasets tested, while its average value 
is increased from 0.971 to 0.98. 

 
Figure 4. Average NDCG value of the top-3 recommended items using the PCC user similarity met-
ric and setting K = 200. 

When we increase the number of recommended items to five (top-5 recommended 
items), similar results are observed. The average real rating recommendation value is en-
hanced by 4.7% (from 4.28 to 4.48). Regarding the average recommendation precision 
value, this is also enhanced by 8.2% (from 82.5% to 89.3%), while the average NDCG value 
is increased from 0.966 to 0.978. 

When we increase the number of NNs taking part in the rating prediction formula-
tion to K = 500, similar results are also observed for both the top-3 recommendations and 
the top-5 recommendations per user. More specifically, in the first case (top-3 

60
65
70
75
80
85
90
95

100

A
V

G
 re

co
m

m
en

da
tio

ns
 p

re
ci

si
on

 % PCC, K=200

top-3 plain CF

top-3 proposed algorithm

0.94

0.95

0.96

0.97

0.98

0.99

1

A
V

G
 N

or
m

al
is

ed
 D

C
G

PCC, K=200

top-3 plain CF
top-3 proposed algorithm

Figure 4. Average NDCG value of the top-3 recommended items using the PCC user similarity metric
and setting K = 200.

Figure 5 illustrates the average (real) rating value of the top-3 items recommended,
before and after the application of the proposed algorithm in all six datasets, using the
correlation threshold technique with THR = 0.5.
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Figure 5. Average rating value of the top-3 recommended items using the PCC user similarity metric
and setting THR = 0.5.

The presented algorithm achieves an average enhancement in the real rating recom-
mendation value of 3.8% (from 4.34/5 to 4.5/5). Again, we can observe that, even when
the proposed algorithm is applied to a dataset with a 4.8/5 initial average rating of the
recommendations (the Amazon Digital Music), and, hence, a limited improvement margin,
it achieves an increase to 4.85/5.

Figure 6 illustrates the average recommendation precision value of the top-3 items
recommended, before and after the application of the proposed algorithm in all six datasets,
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using the correlation threshold technique with THR = 0.5 for the NN selection. The
proposed algorithm achieves an average enhancement in the recommendation precision
value of 6% (from 84.6% to 89.7%). We can again see that even when the proposed algorithm
is applied to a dataset that has 96.1% initial average recommendation precision (the Amazon
Digital Music), it achieves an increase to 97.4%.
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Figure 6. Average precision value of the top-3 recommended items using the PCC user similarity
metric and setting THR = 0.5.

Figure 7 illustrates the average NDCG value of the top-3 items recommended before
and after the application of the proposed algorithm in all six datasets, using the correlation
threshold technique with THR = 0.5 for the NN selection and using the PCC similarity
metric. The presented algorithm achieves an increase in the NDCG in all datasets tested,
while its average value increases from 0.973 to 0.98.
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Figure 7. Average NDCG value of the top-3 recommended items when using the PCC user similarity
metric and setting THR = 0.5.

When we increase the number of recommended items to five (the top-5 recommended
items), similar results are observed, where the average real rating recommendation value
is enhanced by 3.5% (from 4.35 to 4.5). Regarding the average recommendation precision
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value, this is also enhanced by 5.7% (from 84.8% to 89.7%), while the average NDCG value
increases from 0.968 to 0.98.

When we reduce the similarity threshold of the NNs taking part in the rating pre-
diction formulation to THR = 0.0, similar results are also observed for both the top-3
recommendations and the top-5 recommendations per user. More specifically, in the first
case (top-3 recommendations) the presented algorithm achieves an average enhancement in
the real rating recommendation value of 2.7% (from 4.39/5 to 4.51/5), an average enhance-
ment in the recommendation precision value of 3.6% (from 86% to 89.1%), and an average
NDCG value increase from 0.975 to 0.981. In the second case (top-5 recommendations), the
proposed algorithm achieves an average enhancement in the real rating recommendation
value of 2.7% (from 4.39/5 to 4.51/5), an average enhancement in the recommendation
precision value of 4.3% (from 86.1% to 89.8%), and an average NDCG value increase from
0.970 to 0.978.

4.2.2. Evaluation Using the CS Similarity Metric

Figure 8 illustrates the average (real) rating value of the top-3 items recommended
before and after the application of the proposed algorithm in all six datasets, using the
top-k technique with K = 200, for the NN selection and using the CS similarity metric.
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Figure 8. Average rating value of the top-3 recommended items using the CS user similarity metric
and setting K = 200.

The proposed algorithm achieves an average enhancement in the real rating recom-
mendation value of 5.6% (from 4.23/5 to 4.46/5). Examining each dataset individually,
we can see that, when the presented algorithm is applied to the MovieLens 1 M dataset,
where the lowest initial average rating of the recommendations is noticed (due to the
highest rating prediction error—both in terms of MAE and RMSE) at 3.8/5, this average
is enhanced to 4.27/5. At the other end, when the presented algorithm is applied to the
Amazon Digital Music dataset (which is the dataset with the lowest rating prediction error),
with a 4.8/5 initial average rating of the recommendations, it is also enhanced to 4.85/5.

Figure 9 illustrates the average recommendation precision value of the top-3 items
recommended before and after the application of the proposed algorithm in all six datasets,
using the top-k technique with K = 200 for the NN selection and using the CS similarity
metric. The proposed algorithm achieves an average enhancement in the recommendation
precision value of 9.8% (from 80.6% to 88.5%). Examining each dataset individually, we can
see that when the proposed algorithm is applied to the MovieLens 1 M dataset, where the
lowest initial recommendation precision is noticed, at 66.1% (which practically means that,
on average, the users would dislike one out of three recommendations made to them), this
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average is enhanced to 82.9%. At the other end, when the proposed algorithm is applied to
the Amazon Digital Music dataset, with 96% recommendation precision, which, again, is
almost perfect, it also improves, achieving a result of 97.4%.
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Figure 9. Average precision value of the top-3 recommended items using the CS user similarity metric
and setting K = 200.

Figure 10 illustrates the average NDCG value of the top-3 items recommended before
and after the application of the proposed algorithm in all six datasets, using the top-k
technique with K = 200 for the NN selection and using the CS similarity metric. The
proposed algorithm achieves an increase in the NDCG in all datasets tested, while its
average value is increased from 0.969 to 0.979.
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Figure 10. Average NDCG value of the top-3 recommended items using the CS user similarity metric
and setting K = 200.

When we increase the number of recommended items to five (the top-5 recommended
items), similar results are observed, where the average real rating recommendation value is
enhanced by 5.4% (from 4.24 to 4.47). Regarding the average recommendation precision
value, it is also enhanced by 9.4% (from 81.2% to 88.9%), while the average NDCG value is
increased from 0.962 to 0.979.
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When we increase the number of NNs taking part in the rating prediction formu-
lation to K = 500, similar results are also observed for both the top-3 recommendations
and the top-5 recommendations per user. More specifically, in the first case (top-3 rec-
ommendations), the proposed algorithm achieves an average enhancement in the real
rating recommendation value of 4.8% (from 4.27/5 to 4.47/5), an average enhancement
in the recommendation precision value of 8.2% (from 81.8% to 88.5%), and an average
NDCG value increase from 0.969 to 0.978. In the second case (top-5 recommendations), the
proposed algorithm achieves an average enhancement in the real rating recommendation
value of 4.3% (from 4.29/5 to 4.48/5), an average enhancement in the recommendation
precision value of 7.5% (from 82.7% to 88.9%), and an average NDCG value increase from
0.963 to 0.975.

Figure 11 illustrates the average (real) rating value of the top-3 items recommended,
before and after the application of the proposed algorithm in all six datasets, using the
correlation threshold technique with THR = 0.5.
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Figure 11. Average rating value of the top-3 recommended items using the CS user similarity metric
and setting THR = 0.5.

The presented algorithm achieves an average enhancement in the real rating rec-
ommendation value of 2.7% (from 4.37/5 to 4.49/5). We can see again that, even when
the proposed algorithm is applied to a dataset with a 4.81/5 initial average rating of the
recommendations (the Amazon Digital Music), it achieves an increase to 4.86/5.

Figure 12 illustrates the average recommendation precision value of the top-3 items
recommended before and after the application of the proposed algorithm in all six datasets,
using the correlation threshold technique with THR = 0.5 for the NN selection. The
presented algorithm achieves an average enhancement in the recommendation precision
value of 4.1% (from 85.4% to 88.8%). Examining each dataset individually, we can see
that, when the proposed algorithm is applied to the MovieLens 100 K dataset, where the
lowest initial recommendation precision is noticed at 76.4% (which practically means that,
on average, the users would dislike almost one out of four recommendations made to
them), this average is enhanced to 82.5%. At the other end, when the presented algorithm
is applied to the Amazon Digital Music dataset, with 96.1% recommendation precision,
which, again, is almost perfect, it also achieves an increase to 97.5%.

Figure 13 illustrates the average NDCG value of the top-3 items recommended before
and after the application of the proposed algorithm in all six datasets, using the correlation
threshold technique with THR = 0.5 for the NN selection and using the CS similarity metric.
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The proposed algorithm achieves an increase in the normalized DCG in all datasets tested,
while its average value increases from 0.974 to 0.98.
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Figure 12. Average precision value of the top-3 recommended items using the CS user similarity
metric and setting THR = 0.5.
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Figure 13. The average NDCG value of the top-3 recommended items when THR = 0.5 and using
the CS.

When we increase the number of recommended items to five (the top-5 recommended
items), similar results are observed, where the average real rating recommendation value is
enhanced by 2.5%, the average recommendation precision value is enhanced by 4.2%, and
the average NDCG value increases from 0.968 to 0.976.

Lastly, when we lower the similarity threshold of the NNs taking part in the rating
prediction formulation to THR = 0.0, similar results are observed for both the top-3 rec-
ommendations and the top-5 recommendations per user. More specifically, the proposed
algorithm achieves an average enhancement in the real rating recommendation value of
2.7% and an average enhancement in the recommendation precision value of 4.1%. Regard-
ing the average NDCG value, it increases from 0.974 to 0.980 and from 0.968 to 0.976 for the
top-3 and the top-5 recommendations per user, respectively.
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4.3. Execution Efficiency

In this subsection, we discuss the execution efficiency of the presented algorithm,
focusing on the overheads introduced, compared to the typical RecSys pipelines. In
particular, the overheads introduced are as follows:

1. Considering the preprocessing step (where, for each item, the average rating value
given by all users who have rated it is computed), in some cases, this procedure has
already been executed, since some similarity metrics incorporate this value (e.g., the
adjusted cosine measure). Therefore, in these cases, no additional overhead is incurred.
Nevertheless, even in cases where this step is actually executed, the additional load
introduced due to this preprocessing step is negligible, since it requires only one scan
of the rating matrix. In terms of complexity, the maximum additional overhead is
O(#ratings).

2. For the second additional step (where the number of the NNs that took part in the
prediction is computed), the additional load of this action is practically zero, since the
number of contributed NNs is determined in all cases during the rating prediction
computation process.

3. Lastly, the overhead introduced by the third additional step (where the certainty of a
rating prediction is assessed based on the features listed in Section 3.2) is negligible,
since the assessment consists of simple comparisons. Notably, the filtering of items
for which the prediction does not satisfy the certainty criteria is performed before
the sorting of the candidate item recommendation list; therefore, the item list that is
finally sorted to compute the final recommendation typically has a lower cardinality
than the full list, resulting in execution time savings.

According to the analysis presented above, the maximum additional overhead in-
troduced by the proposed algorithm is AC = O(#ratings). Considering the fact that the
complexity of optimized similarity computation between a single pair of users u and v is
O(|Iu|+ |Iv|), where Iu and Iv are the number of ratings entered by users u and v, respec-
tively [57], the overall complexity of the similarity computation phase is CSC = O(#users2)
× O(#ratings_per_user) = O(#users2 × #ratings). Since #users × #ratings_per_user = #ratings,
CSC = O(#users × #ratings) = O(#users) × AC. Therefore, especially for large datasets where
the number of users is high, the maximum additional complexity introduced by the pro-
posed algorithm will be much smaller than the complexity of the similarity computation
phase alone. Taking into account that the complete recommendation generation workflow
includes, besides similarity computation, (a) rating prediction computation and (b) recom-
mendation formulation, we can conclude that the additional overhead introduced by the
proposed algorithm is practically very small to negligible.

To further quantify the overhead incurred due to the application of the proposed
algorithm, we measured the execution time for the experiments described in Section 4.2
for all of the selected datasets. These measurements are depicted in Table 2; the datasets
selected are MovieLens 1 M (the largest dense dataset), Amazon Digital Music (the smallest
sparse dataset), and Epinions (the largest sparse datasets). The measurements concur with
the theoretical analysis presented above, with the relative overhead in sparse datasets being
reduced as the dataset size increases. The measurements also show that the overhead for
dense datasets is also limited (0.3% for the MovieLens 1 M dataset).

Table 2. Experiment execution time for the baseline algorithm vs. the proposed algorithm.

Dataset Name Baseline Algorithm
Execution Time (sec)

Proposed Algorithm
Execution Time (sec) Overhead (sec) Overhead (%)

Amazon Digital Music (sparse) 20.2 20.7 0.5 2.5%
Epinions (sparse) 3188 3192 4 0.13%

MovieLens 1 M (dense) 1406 1410 4 0.3%
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Regarding the space efficiency of the algorithm, the additional data that need to be
stored are as follows:

1. The storage of the items’ average ratings requires an additional space of one real
number per item;

2. The storage of the user’s average ratings requires an additional space of one real
number per user;

3. For the number of NNs that took part in the prediction, the algorithm needs to allocate
one integer per prediction. Considering that the number of NNs that contributed to
the formulation is typically small, one byte per prediction suffices. For cases where
the number of NNs exceeds 255 (and therefore cannot be stored in one byte) storing
the value of 255 suffices, since it corresponds to very high accuracy.

Overall, the space required is deemed small and easily manageable by modern com-
puter systems.

5. Discussion of the Results

The experimental evaluation results presented in the previous section substantiate that
the proposed algorithm effectively enhances recommendation quality in CF, as assessed in
terms of the real rating values of the recommended items as well as their precision and their
NDCG. More specifically, if we apply the plain CF algorithm (without using the proposed
enhancements), the average rating value of the recommended items to the users is found
in the range of [3.8, 4.8], while with the application of the presented algorithm, the range
is enhanced to [4.2, 4.85]. In regard to the recommendation precision, the average of the
plain CF algorithm is found in the range of [66%, 96%], while with the application of the
presented algorithm, the range is enhanced to [82%, 97.4%].

The two most notable cases in our experiments are as follows:

• The case of the MovieLens 1 M dataset when using the KNN technique (in both
similarity metrics): The use of the plain CF algorithm produced mediocre results since
the average rating value of the recommended items was measured at 3.8/5 and the
average recommendation precision was measured at 66%. This practically means
that the users would dislike one out of three recommendations made to them, a case
that clearly jeopardizes the credibility of the RecSys. However, when the proposed
algorithm was applied, the average rating value of the recommended items was
enhanced to 4.3, while the average recommendation precision was also enhanced to
83%, practically restoring the reliability of the RecSys.

• The case of the Amazon Digital_Music dataset: In this dataset, both the RMSE and the
MAE of the plain CF algorithm were found to be very low, and hence, in most of the
cases, the RecSys recommended the items with the highest numeric values. As a result,
both the mean rating value of the recommended items and the mean recommendation
precision were measured to be extremely high, at 4.8/5 and 96%, respectively, leaving
practically no room for improvement for the proposed algorithm. However, even in
this case, the proposed algorithm managed to enhance both of these metrics to 4.85/5
and 97.4%, respectively.

Overall, we can observe that the proposed algorithm not only protects the reliability
of the RecSys from low recommendation precision, which occurs in some cases, but also
achieves results of very high accuracy for the majority of the cases examined (the mean
precision value of all cases was found to be ≥82%).

The algorithm proposed in this paper exploits the notion of certainty in rating pre-
dictions to achieve better precision in recommendations, with the improvements ranging
from 1.4% to 24%. Notably, this is realized while maintaining a high level of coverage,
with the losses in coverage due to the exclusion of non-certain predictions ranging from
2.6% to 15%. Similar approaches have been undertaken in the literature for a number of
recommendation formulation algorithms, both in the CF domain (e.g., user rating profile
(URP) [58] and SVD++ [59]) and using other recommender system technologies, such
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as matrix factorization (e.g., Biased MF [60], Bayesian non-negative matrix factorization
(BNMF) [61], non-negative matrix factorization (NMF) [62], and probabilistic matrix factor-
ization (PMF) [63]).

In [64] the Bernoulli Matrix Factorization (BeMF) algorithm for rating prediction com-
putation is introduced, along with a method for assessing rating certainty for predictions
computed using the BeMF algorithm. Afterwards, in the recommendation generation
phase, ratings with low certainty levels are excluded from the recommendation in order to
improve rating precision. The performance of the proposed rating precision enhancement
algorithm is evaluated against three datasets, one dense (MovieLens) and two sparse ones
(FilmTrust and MyAnimeList), and is compared to the performance of rating precision
algorithms that are based on the aforementioned rating prediction algorithms (URP, SVD++,
Biased MF, NMF, and PMF). According to the results of these evaluations, the CF-based
methods exhibit only marginal precision gains when the proposed methods exploiting
rating prediction certainty are applied, with the improvement in recommendation precision
being less than 0.4% in all cases. Considering the algorithms from the matrix factorization
domain, Biased MF, NMF, and PMF exhibit similar behavior to the CF-based algorithms,
i.e., marginal recommendation precision improvements are reaped, with the benefits being
up to 0.35% in all cases. BeMF and BNMF, on the other hand, achieve higher improvements
in precision, albeit with substantial drops in recall. For the cases where recall losses do
not exceed 20%, which can be deemed acceptable to tolerable, the corresponding gains in
precision range from 1.6 to 7.1% (average improvement: 4.3% for BeMF; 3.8% for BNMF).

Considering the above, the algorithm proposed in this paper clearly surpasses the
performance of similar algorithms in the CF domain, while also achieving higher improve-
ments than the respective algorithms in the matrix factorization domain. In our future
work, we will also consider the adaptation of the proposed algorithm to work with rating
prediction algorithms in the matrix factorization and machine learning domains.

Bias is a major issue in RecSys and needs to be considered and addressed in rating
prediction and recommendation formulation algorithms. Considering the core aspects of
the algorithm proposed in our paper, these are not directly affected by the bias problem
since the criteria used to distinguish certain predictions from non-certain ones are (a) the
number of near neighbors contributing to the formulation of a prediction and (b) the
average rating of an item. The number of neighbors of a user is not affected by differences
in rating practices, since the two similarity measures used in the paper effectively tackle
these diversities. More specifically, the CS metric measures the angle between the rating
vectors, not their magnitude [65,66], and the PCC measure subtracts the mean of each user’s
rating from the corresponding user’s rating values [30]. Regarding the average rating of
an item, this is computed over the ratings entered by all users. Therefore, differences
in rating practices are smoothed by the fact that the set of users that rate each item is
expected to consist of users with both strict and lenient rating habits. However, there may
be cases where the set of users that have rated an item is skewed, containing a significantly
higher number of users with strict or lenient rating practices. This may lead to the item
being suppressed or overrepresented in recommendations, respectively. This issue will be
considered in our future work.

6. Conclusions and Future Work

In this work, we presented a novel rating-based algorithm for recommendation for-
mulation that aims to produce more accurate and useful recommendations. The proposed
algorithm exploits the concept of rating prediction certainty, derived from features that
have proven to be associated with rating prediction accuracy in CF [5,6], arranging so
that rating predictions of low certainty are not utilized in the stage of recommendation
formulation.

More specifically, a high-value rating prediction that has either (1) a low number of
NNs taking part in the rating prediction formulation or (2) the average value of the item
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for which the prediction is being formulated is not close to the limits of the rating range is
deemed uncertain, and, hence, it is not forwarded as a recommendation to the user.

The presented algorithm was experimentally validated through a set of experiments
using six rating datasets from multiple sources, two user similarity metrics, and two NN
selection techniques that are all widely used in CF research to ensure the generalizability,
applicability, and reliability of the results. The evaluation results have shown significant
improvement in recommendation accuracy, enhancing the quality of the generated recom-
mendations. This is verified by quantifying the quality using three widely used metrics,
namely (i) the average rating value of the recommended items, (ii) the precision of the
recommended items, and (iii) the normalized discounted cumulative gain of the recom-
mended items. The results demonstrate that the algorithm achieves performance gains
in all item domains (the experiments cover a wide range of item domain datasets, from
music and videogames to movies) and across a variety of dataset features, such as size,
number of users and items, density, etc. Furthermore, the performance gains are achieved
under (a) both similarity metrics and (b) both NN selection methods and under all relevant
parameter settings (similarity thresholds or number of retained NNs).

The proposed algorithm proved to successfully handle cases where the use of the
plain CF algorithm exhibited low recommendation precision (65–70%), which would
jeopardize the reliability of the RecSys (since the users would actually dislike one out
of three recommendations made to them), while at the same time being able to improve
cases with very high initial precision (95–97%), albeit in the latter case improvements were
limited, since the performance enhancement margins were very small.

An identified limitation of this work is that, since the proposed algorithm practically
excludes item predictions from becoming item recommendations, the cases where a rec-
ommendation can be produced based solely on CF are reduced. This problem is minor
in relatively dense datasets (e.g., in the MovieLens 1 M dataset, the initial coverage is
97%, and, after the application of the proposed algorithm, it drops to 94–95%). However,
in sparse datasets, this problem is more serious (e.g., in the Epinions dataset, the initial
coverage is 76%, and, after the application of the proposed algorithm, it drops to 64–65%).
In both cases, mitigation methods for this issue can be used, e.g., recommend an item that
is widely accepted (an item with a very high rating average) or try to use complementary
sources of information, such as item categories (e.g., if user X seems to like thrillers, suggest
a thriller to him), etc. In general, research output, focusing on (1) low density and coverage
CF cases [67–69], (2) cold start CF issues [70–72], and (3) hybrid CF techniques [73–75] can
be easily used to overcome this limitation. Some preliminary tests have been conducted
using the algorithm for density enrichment of sparse datasets introduced in [76], which
introduces and exploits the concept of robust ratings to reduce the dataset sparsity: the
Epinions dataset (which demonstrated the highest coverage drop) was densified using the
algorithm proposed in [76], and then the algorithm proposed in this paper was applied
on the densified dataset. Under this setting, the proposed algorithm achieved coverage
equal to 75%, almost fully compensating the coverage loss incurred when the proposed
algorithm was applied to the original (non-densified) Epinions dataset. On the other hand,
the application of the proposed algorithm to the densified dataset limited the accuracy
gains initially achieved. For instance, while the average precision value of the top-3 recom-
mended items using the PCC user similarity metric and setting THR = 0.5, the gains for
precision dropped from 4.01% to 3.13%, yet the precision gains still remain considerable.

Another method to tackle the reduction in coverage would be to modify the proposed
algorithm so as not to exclude predictions of low certainty from becoming recommendations
but rather consider them as fallback options in the absence of predictions with high certainty.
Our preliminary experiments with the CiaoDVD dataset indicate that this variation of the
algorithm, when applied in the scenario of using the top-3 recommended items using
the PCC user similarity metric and setting K = 200, fully restored the coverage of the
baseline algorithm (as expected), limiting, however, the precision gains from 5.3% to 4.26%;
still, the gains in precision remain substantial. The interplay between coverage loss and
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accuracy gains under different scenarios and the combination of the proposed algorithm
with algorithms on coverage increase that have been proposed in the literature will be
further explored in our future work.

The proposed algorithm exploits traits from the CF recommendation process to assess
the certainty of predictions and utilizes these traits thereafter in the recommendation for-
mulation stage. This rationale can also be applied to non-CF based RecSys methods. For
instance, works concerning the explainability of graph convolutional networks identify
traits of recommendations that explain why each item was recommended, correlating
recommendations to input/training data. In particular, ref. [77] quantifies the contributions
and importance of nodes by means of their gradient square values, while ref. [78] estab-
lishes a mapping between the final GCN layer and input nodes, generating an estimate of
each node’s importance for the result. In our future work, we plan to investigate how these
traits can be used to assess the certainty of individual item rating predictions and recom-
mendations and how these assessments can be used to increase recommendation accuracy.

Besides the issues discussed above, our future work will focus on exploring more
features and their association with prediction accuracy, as well as using them in the rec-
ommendation production phase. Lastly, we are planning to include basic complementary
sources of information, which can be available in the majority of the RecSys, such as basic
user demographics (i.e., origin and gender) and item categories (such as types of movies,
etc.). The use of ranking-based approaches will also be considered.
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